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Equations for the second derivative of the Gibbs energy of mixing with respect to composi-
tion were derived on the basis of the Barker-Guggenheim theory of quasichemical equilib-
rium for mixtures of two polymers containing polar groups and a nonpolar rest. Using
equations derived, conditions for the phase separation in mixtures of two strongly
intercomplexing polymer components were evaluated. The phase instability appears when
the components differ in their polar group contents (strictly speaking, in their surface frac-
tions in respective macromolecules), or due to an unfavorable interaction between nonpolar
groups of the components. The effect is conditioned by small affinity of polar to nonpolar
groups and may be influenced by the difference in this affinity between both components;
nevertheless, the latter factors are not sufficient for a phase instability to occur.
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The study of phase separation in polymer mixtures often brings unexpected
findings. Most of them could be explained by assuming merely an incom-
plete establishment of phase equilibrium due to small mobility of
macromolecules in systems without solvents, but some of them could be
interpreted by means of a theoretical model derived from equilibrium ther-
modynamics. The latter are represented by the behaviour of a mixture of
two polymers in which phase separation may occur regardless of the fact
that both components form a polymer—polymer complex bound by strong
interactions (hydrogen bond, as a rule). For example, measurements of T,’s
of polymer mixtures led to the conclusion that the mixture of
poly(oxyethylene) and poly(methacrylic acid) shows limited miscibility® in
a certain concentration range. Only small attention has been devoted to
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the problem of phase separation in complex-forming synthetic polymers.
Haraguchi et al.?® measured phase equilibria in a ternary mixture tolu-
ene/w-aminopolystyrene/w-sulfopoly(oxyethylene) where the complex for-
mation occurs through functional end groups and manifests itself by an un-
usual splitted form of the coexistence curve (binodal). The results could be
interpreted by the mean-field theory of the Flory—-Huggins type. A theory of
association in binary mixtures of hydrogen-bonded polymers was formu-
lated by Tanaka et al. who were dealing with systems where the association
leads to formation either of reversible diblock copolymers* or of reversible
graft copolymers®. Assuming uniformity of both nominal polymer compo-
nents, phase diagrams were obtained which, in addition to macroscopically
heterogeneous regions, show regions of mesophases containing ordered
microdomains of molecular dimensions. In an ample series of papers (see
e.g. refs®7), Painter, Coleman et al. dealt both experimentally and theoreti-
cally with mixtures of polymers bearing a proton-donor or proton-acceptor
group on each of their monomer units.

All theories mentioned above were based on the concept of chemical
equilibrium among species formed by association, constituting a mixture of
the Flory—-Huggins type. Non-specific interactions were treated by conven-
tional interaction parameter X and phase separation of the complex-
forming mixture was brought about by a sufficiently high positive value of
this quantity. But this parameter involves only a global description of the
whole spectrum of nonspecific interactions. For example, in mixing of two
components, the one containing polar group A and nonpolar P and the
other polar group B and nonpolar Q, new binary contacts of the types A-B,
A-Q, P-B and P-Q are formed at the expense of contacts A-A, P-P, A-P,
B-B, Q-Q, B-Q. Of these contacts, only A-B, and possibly A-A or B-B are
hydrogen bonds, which are active in complexation equilibria; the other
interactions are incorporated into parameter X. The fact that this parameter
is not included in equations describing the association equilibrium origi-
nates in a simplifying assumption that the contribution of nonspecific in-
teractions to the Gibbs energy of mixing is given by nominal
concentrations of both initial components only and does not depend on
the degree of their engagement in the association equilibria.

A more detailed analysis of the problem would evidently need a detailed
description of the so-called nonspecific interactions. This is enabled by the
use of the Barker-Guggenheim theory which treats all sorts of pair contacts
in the same manner without regard to “chemical” or “physical” interac-
tions. The basic concept of this theory is represented by a set of equations
(for different pairs K, L) describing the “quasichemical” equilibrium of the
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physical process during which two heterocontacts between groups K and L
are formed at the expense of homocontacts K-K and L-L. On the basis of
this theory, we have derived equations for the second derivative of the
Gibbs energy of mixing with respect to composition®. As it is known, the
derivative acquires negative values under the conditions of the phase insta-
bility and is equal to zero along the spinodal line. In this paper, we will use
the derived equations for characterization of conditions under which phase
instability in a mixture of strongly complexing polymers appears (phase in-
stability in a range of composition indicates phase separation in a wider
range). The equations were derived under the assumption that polymer
components 1 and 2 differ in nature of their polar groups, but have chemi-
cally similar nonpolar groups. Finally, we will treat some consequences
which could follow from the different character of nonpolar groups in both
components.

THEORETICAL

Basic Equations

Equations of quasichemical equilibria between contacts K-L, K-K and L-L
are usually written in the form

NEL = 4niL NKK NLL ' (l)

where N, is the number of contacts of the K-L type and parameter n,, is a
function of temperature and/or pressure only.

In our preceding communication®, equations of quasichemical equilibria
were advantageously expressed by means of quantities related to the unit
number of interaction sites. That is why the site or surface fraction is de-
fined again

zq; n. s, @
ej = ] ) - 1T , (2)

qui n, Zsi [0)

where n; is the amount of the j-th component, z is the lattice coordination
number, zg; is the number of surface sites interacting with nearest neigh-
bours, @ is the segment fraction, and s; characterizes the surface-to-volume
ratio
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s =4 (3)

where r; is the number of segments in a molecule of j-th component.
Further we define

AG = AG AG

: quinizzsicﬂ

4

where AG is Gibbs energy of mixing, and AGy and AG, are related to the
unit quantities of segments and sites, respectively. The fractions of interac-
tion sites (A and B are polar groups in molecules of components 1 and 2, re-
spectively, R is nonpolar group in each component) are defined as

P, =0a,06, , (5a)
Y, =a, 6, , (5b)
qJR :(1_GA)91 +(1_GB)92 ) (SC)

where a, and ag give the proportion (relative area) of contact sites of type A
and B, respectively, in the corresponding molecule. It is obvious that y, +

Pg + P = 1.
Consistently, we define

— (1 +6KL) nKL

= (K;L=ABR , (6)
z(q,n, *+d,n;)

yKL

where ny, is the number of contacts between groups of types K and L, &, is
the Kronecker delta, and further

1/2

Yk =Yk - (7
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Equations of quasichemical equilibria between contacts of different type
are then

ke = M Y Yo s (8)

where ny, is a parameter independent of composition. There are also bal-
ance equations

Yaa T Yas T Yar =Wa (92)
Yag T Y T V¥ =Ws (9b)
Yar T ¥Yer T Ve =Wr - (9c)

By substitution from Eq. (8), we obtain the following set of three equa-
tions

2N Ya Ve T Nar Ya Ve =W, (10a)
Nas Ya ¥Ys T Y5 * Nor Yo Ye =Ws (10b)
Nag Ya Ye *Nor Vs Yo + Ve =Wp - (10c)

The Barker-Guggenheim form of the Gibbs energy of mixing can be split
into a combinatorial part (designed by superscript C) and an interactional
part (designed by 1)

0 0
AG,S/RT:Z(cp,/ri)In(pi Zscp, DTB (11)

ZJJ
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AG /RT = zscp,éwn ze(c; ) /RTD, (12)

where (G!)? relates to neat component i. The second derivative of the Gibbs
energy with respect to composition is then given by the relation

. 1/2(s, -s,)° D
070G, /3¢ = RTA/ (r,9,) +1/ (1, 9,) - -2/ -2x\. 0, (13)
S @,
: 259 g
where the interaction parameter X! is defined as
Xt = ~(1/2RT)(0°AG), / 9} ) (14)
and is given by the equation
s) B*AG. O
X =—7>HD, (15)
2RT 0O 06; 0O
where
2
s,S
<s> = % ) (16)

|:|3
0% ;0,0
-0

In our preceding communication, equation for calculation of this param-
eter was given in the form (see Eq. (75) in ref.8)

XI _ _B0OHa, _GB)Z D +(X§ Dr +Gi Dy _ 0,0, +0,;8, —a, ay D(l?)
s — A4 [0 -
2 0 Dy Dyg + Dy Dy + Dy Dy 0,6, Yy
where
Dy =2y, ¥, -y, (KL=ABR (18)
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and y, is given by Eqg. (8). The values of y, and y, for a given composition
need to be calculated by numerical solution of the set of equations (10a),
(10b) and (10c).

Approximate Equations for Very Strong Interactions

Now we introduce approximate equations valid in the case when polar
groups A and B strongly attract each other (large n,g) while polar (A, B) and
nonpolar (R) groups strongly repel each other (small n,gz and ngg). An in-
spection of these equations enables qualitative conclusions about the influ-
ence of individual factors on the value of x!. and thus of the second
derivative of the Gibbs energy.

1. Suppose first that groups A are in excess over groups B (Y, > Yg). The
following hypothetical case

r]AR :O r]BR :0 l/nAB :O (19)

can be described by simple analytical expressions. The frequency of A-B
contacts is given by the content of the minor group and hence

Yae =Ws (20)

where the superscript « denotes the system specified by Eq. (19).
It is also valid that

Yar =0, (21)

Yer =0 . (22)

After substitution into Eqgs (9a), (9b) and (9c) and their solution using Eq.
(7), we obtain

y: SRVL! Nl VS (23a)
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ys =0, (23h)

= Ju, . (23¢)

Using expressions (18) and after substitution into Eq. (17) and rearrange-
ment, we obtain

EDZUJR (Gi Py +C(§ P, - (, _C(B)Z P, (1-2¢;) ] (24)

(Xsc) == 2 2(LIJA _LIJB)lIJA LIJB

If Y5 approaches Y, from the bottom, ! decreases to infinitely negative
values. On the other hand, for small yg, when g, - a,, X.. can, at suffi-
ciently large difference (a, — 0g), acquire positive values so that the mixture
may show phase instability in this region.

If A is the minor polar group (W, < Wg), the equations given above are
valid after exchange of subscripts A and B.

2. If parameters nag, Ngr and 1/n,g acquire nonzero, but small values, we
can calculate correction terms for Eq. (24). By an approximate solution of
equations for contact balances, we obtain in the case of i, > Yg

YN (TS TR D”AR Teta-ay,) (25a)
2 = (Mer /N e VW 7 (W, — W) (25b)

g = Ws ~ Yer ‘ﬂ}fBLPE/(LIJA _LIJB)' (25c¢)
Finally, using Egs (16) and (17), we have

XSC (XSC [nARQAR (nBR /nAB )QBR n;\é AB] ' (26)

where
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:_(GA +0, —20,0,)°

Qar 4(41 — )3/2¢3/2 (27a)

-2 4o - -2
QBR — (GA +GB GAGBZELIJ A?:JLIJR)SIZ(S::\/:' GB O(AO(B)UJB] , (27b)
Qu = ﬁ (27¢)

The frequency of contacts A-R and B-R is no longer zero; this fact must
lead to a lowering of the value of the interaction parameter, and thus we
would expect a negative sign with Qg and Qgg. This is unequivocally the
case with Q,r because, owing to an excess of groups A, the formation of
A-R contacts does not disfavour the frequency of A-B contacts. On the
other hand, at high values of n,g, almost all groups B are involved in con-
tacts A-B, and thus contacts B-R can form only at the expense of A-B con-
tacts, as is obvious from the second term on the right-hand side of Eq.
(25c). The Qgg coefficient then consists of two terms; the term correspond-
ing to the formation of B-R contacts is negative (analogously to Q,g), but it
prevails only if ag is sufficiently larger than a, and the concentration of
component 2 is sufficiently large. Otherwise, the term expressing competi-
tion of B-R and A-B contacts prevails and Qgg has positive sign. The posi-
tive sign of the Q,g coefficient reflects an increase in x. with decreasing
Nag- When constants nag, Ngg @and 1/n,g are small quantities of the same or-
der of magnitude x, the term n,zQg iN Eg. (27b) is the only term of the or-
der x, the other two terms being of the order x?. The next possible term of
the same order, containing n2,, is zero. The value of correction terms in Eq.
(27b) will obviously grow rather fast when the composition approaches a
value at which the concentrations of A and B groups are equal (4 = Yg). In
this case, even terms of higher orders, not discussed here, are operative.

3. A special analysis is required in the case when the concentration of A
groups is equal to that of B groups (“point of equivalence”)

Wy =W =4 . (28)

This situation becomes operative at 8, given by the relation
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0, =a,/(a, +a,), (29)
so that
Y=a,0,/(a, +a,). (30)

For such composition, in the hypothetical case where n,gz = 0 and ngg = 0,
it is possible to obtain an analytical solution for any value of n,g. By solv-
ing the equation set (9a), (9b) and (9c) for this case, we obtain

g
= = , 3la
Ya =VYe ‘/1+nAB (31a)

Yas = NagW/(1+N,4), (31b)

Ye =120, (31c)

and, after substituting into Egs (16) and (17), we have

XL = —f;z[(aA +0,) (N 1) -(a, —ay)* 7(2- 2L|J)]. (32)

If n,g attains high values, we can simplify the equations given by neglect-
ing terms which do not contain this constant; we obtain, e.g., yag = Y (for
instance, the concentration of complex is equal to the concentration of
groups A or B).

4. Let us consider again a system, in which parameters nag, Ngr and 1/n,g
attain nonzero, but small values. Solving equations (9a) and (9b), we obtain

1 1
B =y _E(yAR +yBR)_E\/(yAR _yBR)2 +4'~|J2 /nis ; (33)

here y,z and ygg can be approximately expressed using Egs (31a) and (31b)
as
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Yiw = NNi?¥? (1-29)" K=AB. (34)

After substitution into Eq. (75) from ref.8 and rearrangement, we obtain

X! :-@g (@, +ag)° _

2 L+ Yer *2(Yae = Yer)® AW /1%

_C(i(l—(XB)'FC(E(l—(]A)D
W, il (35)

The second term in square brackets is the limit of the first term for hypo-
thetical state of random mixing; in the case of large n,z and small Nag, Nggs
it can be neglected in first approximation. If constant n,gz grows to infinity,
quantities y,g and ygg decrease to zero even at NONZero N, Ngr, and X', pa-
rameter diverges to infinitely negative values. On the other hand, if n
and  are small quantities of the same order of magnitude as nag and ngg,
the frequency of the “thermodynamically high-quality” A-B contacts de-
creases in favour of the formation of lower-quality A-R and B-R contacts.
Thus the absolute value of X! will be strongly reduced by increasing nag
and/or ngg.

Course of Spinodal in the Temperature versus Composition Diagram

An interesting conclusion concerning the form of the spinodal curve in the
phase diagram temperature-composition follows from equations derived for
systems with small values of 1/n,g, Nagr @and ngg. We start from expressions
for the second derivative of the Gibbs energy with respect to composition
and denote

z :[GZ(AGN /RT)/ acpf]T . (36)

The equation Z = 0 must be fulfilled in every point of the spinodal curve
and the change in composition with temperature is thus given by the rela-
tion
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o, __(GZ/OT)el
ﬁ%@" (6z70e,), 37

It follows from Eqgs (13) and (26) that

2=2°-2(x), ([N +(Mer /Na)er +N2Qu ], (38)

where Z° is a combinatorial term and the second term on the right-hand
side is given by Eq. (24). For our system, both these expressions are domi-
nant terms on the right-hand side of Eq. (38) and are independent of tem-
perature. The change of Z with temperature is then given by the equation

0Z _
aT RT 2

[ NarNarQar * 2hABr]AB AB (hAB ~ Pge )(nBR /nAB )QBR] . (39)

where hy, is the change of enthalpy associated with formation of one
KL-type contact. It is obvious that for small values of n,g, Ngr and n,;, this
derivative is negligible. On the other hand, by differentiation of Eq. (38)
with respect to 0,, the first two terms on the right-hand side of the equa-
tion do not vanish. Then the denominator on the right-hand side of Eq.
(37) usually attains reasonable values, so that the spinodal composition is
almost independent of temperature and both branches of the spinodal
curve are almost vertical straight lines. The only exception is in the vicinity
of the critical point where

(0z/06,). =0. (40)

The slope of the spinodal is thus finite in the vicinity of the critical point,
and it is zero in the critical point itself.

Effect of Difference in Nonpolar Groups

The phase separation in systems so far studied with complexation of
components was conditioned by inequality of relative areas of polar groups
(o, # ag). It follows from Eq. (13) that the phase instability can be also
brought about by a sufficiently great difference in molecular surface-
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-to-volume ratios, s;—s,. Finally, it is necessary to take into account that our
calculations were made under the assumption that nonpolar groups R are
of the same nature in both components. Let us admit that they are different
and denote polar groups in components 1 and 2 as P and Q, respectively.
An exact solution would result in a much more complicated expression
than that included in the right-hand side of Eq. (16); therefore, we assume
that

Nap = Nao (41a)
Ner = Nao (41b)

but
Npq = 1- 5” , (42)

where dn is sufficiently low to permit a perturbation procedure of solution.
We obtain thus the correction for parameter x ..

0*(veyo)

3L =-(dn/2) P
1

(43)

which is to be added to the original value of X! . The correction can be ex-
pressed simply in some limit cases only; for instance, if all four parameters
of interactions of polar with nonpolar groups (i.e., Nap, Nags Ngp: Neg) are
zero, then we have

6XISC - (1_GA)2 (1_0(13)2
[(A-0a,)8, +(1-0ay)6,]T°

on . (44)

Accordingly, if npg < 1, 3n is positive and the contribution of this term to
the value of the second derivative of G is negative. Thus, for sufficiently
great dn, phase instability may arise even for a, = 0g as a consequence of
unfavourable P-Q interaction, as was assumed by authors who solved this
problem by the method of association equilibria=>.
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Let us discuss the symmetry of curves in Fig. 1, where a, = ag. The nega-
tive contribution of the P-Q interaction will be concentration-
independent, so that the curve for the second derivative of the Gibbs en-
ergy is shifted without deformation toward lower values and two regions of
phase instability are formed on both sides of the vertical symmetry axis (¢,
= 1/2). Accordingly, in the phase diagram T(@,), two symmetrically placed
spinodal curves appear, which in general case may, but not necessarily,
mean an occurrence of two symmetrically placed binodals (cf. refs®->).

DISCUSSION

Using several graphs, we will show an influence of different factors on the
sign and value of the second derivative of the Gibbs energy with respect to
composition. First, let us show the unimportance of the athermal contribu-
tion in Eq. (13). The first two terms on its right-hand side correspond to the
Flory-Huggins equation and, for long chains (r of the order 10% and
higher), they have negligible values with the exception of narrow intervals
at the margins of the graph (for ¢, - 0and @, — 0). The third term is nega-
tive and follows from the difference in molecular surface-to-volume ratios
of both components. In our graphs, this term does not play any role be-

10

2
1

92 (MG, RT /0@

Fic. 1
The second derivative of the Gibbs energy of mixing with respect to composition in its
compositional dependence: the influence of ng; parameter if nyg = Ngg. 0, = 05 = 0.25; N5 = 10.
Curves: TNy =0, 2Nz =0.1, 31z =03
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cause we have chosen s, = s, and thus also 8, = ¢,. It is then only the inter-
action term which becomes operative in the whole range of composition:

32AG, /90> O-2RTx.. . (45)

In Fig. 1, the system with a great affinity to polymer—polymer association
(nag = 10) is shown for different values of the interaction parameter nug,
which are the same also for the parameter ngz. We observe dramatic differ-
ences between the second derivative of G in the middle (the maximum cor-
responds to condition Y, = Yg) and in the border regions of composition,
but the second derivative does not sink into negative values and the system
is phase-stable in the whole range of composition. The order of curves in
the middle region is opposite to that at the borders. For instance, at the
right border, an influence of thermodynamic quality of A-R contacts be-
comes operative, the Qg term in Eq. (26) prevails over the Qgg term and
the second derivative increases with n,gz. On the other hand, competition
of contacts A-R and/or B-R with A-B contacts prevails in the middle region.
This can be seen more clearly in Fig. 2 where the influence of A-R contacts
is eliminated and the curves only differ in the ngg parameter. At an excess
of groups B (small @,), the quality of B-R contacts plays a dominant role,

2
1

02 (MG RT )/og

0 1 L 1 L
0 0.2 0.4 0.6 0.8 N 1.0

Fic. 2
The second derivative of the Gibbs energy of mixing with respect to composition in its
compositional dependence: the influence of ngg parameter if N,z = 0. a, = oz = 0.25; n,g = 10.
Curves: T nNgg =0, 2ngg = 0.1, 3 ngg = 0.3
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while at their lack (¢, > 1/2), the order of curves is governed by an unfavor-
able influence of the competition of B-R and A-B contacts.

The influence of increasing difference in the relative area of polar groups
is noticeable in Fig. 3. If we let increase a, and, to the same extent, decrease
0g, then, according to Eq. (29), the value of 8,, at which the equivalence of
surface sites A and B is reached, decreases and so does the value of . Ac-
cordingly, the maxima of curves are shifted to the left (somewhat more
quickly than the mentioned value of 6;) and, according to Egs (34) and
(35), the value of (-x!.) increases with decreasing Y, the value of the second
derivative in its maximum also increasing. On the left-hand side, we ob-
serve an increase in the second derivative with increasing difference (a, —
0g). On the contrary, a decrease at the right-hand side is evident; at suffi-
ciently great difference in a’s (curve 4), the sought-after region of phase in-
stability even appears. The phase separation of blends of two strongly
interacting polymers can thus appear if the content of polar group A along
the chain differs significantly from that of group B. In this manner (in suffi-
cient distance from the equivalence composition), “unfavorable” contacts
between polar groups in excess (in Fig. 3, groups A) and nonpolar groups
are forced. The mixture responds by forming another phase where the ex-
cessive molecules of component 1 concentrate.

2
1

92 (MG, RT )o@

|
0 0.2 0.4 0.6 0.8 0N 1.0

Fic. 3
The second derivative of the Gibbs energy of mixing with respect to composition in its
compositional dependence: the influence of the difference a, — ag. a, + ag = 0.5; ng = 10,
Nar = Ngr = 0.1. Curves: 7T Aa =0, 2 Aa = 0.1, 3 Aa = 0.2, 4 Aa = 0.3 (Aa = a, — ag)

Collect. Czech. Chem. Commun. (Vol. 64) (1999)



Hydrogen-Bonded Polymer Mixtures. I 29

In Fig. 4, a similar system with o, > oy is studied in dependence on de-
creasing strength of A-B interactions. As it is seen, the maximum of the sec-
ond derivative decreases and shifts left. In the same direction, the region of
negative values becomes wider and the minimum deepens. In Fig. 4, we put

6.0

2
1

92 (MG RT)/0g

-15 ! | ! I

0 0.2 0.4 0.6 0.8 1.0
¢

Fic. 4
The second derivative of the Gibbs energy of mixing with respect to composition in its
compositional dependence: the influence of n,; parameter. a, = 0.3, ag = 0.1; Nz = Nggr =
0.1. Curves: TNag =10, 2Npg=6,3Nag =4, 4Npg =3, 5Npg =2, 6Npg =15 7Ny =1

1.0 :

(pl,spinod
o
o
T
*
a
|

0.0 | I |
25 5.0 7.5 NAB 10.0

Fic. 5
The position, @ gineg: Of the left margin of the phase instability region in the dependence
on n,g for different values of n,z and ngz parameters (the right margin lies in close vicinity
of ¢ =1). ay = 0.3, ag = 0.1. Curves: 0 nug = 0.1, ngg = 0.3; O npg = Ngg = 0.1; Onyg = 0.2,
Ngr = 0.1; @ Nag = 0.3, ngg = 0.1
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Nar = Ner- An inequality of these constants may influence the region of
thermodynamic instability in different directions, as it is shown in Fig. 5.
There, the dependence of composition corresponding to the left-hand
spinodal point versus the n,g constant is plotted (the right-hand spinodal
point lies near to 6; = 1). It is obvious that the composition range of insta-
bility widens if the polar group with greater a has smaller tendency to enter
into contacts with the nonpolar group R (e.g., when a, > dg, Nag < Ngr); IiN
the opposite case, the region becomes smaller and it may not appear at all
(e.g., for nag = 0.3, Ngg = 0.1, if Nag > 2).

The authors wish to thank the CS-US scientific technical program (grant No. 950024) and the
Grant Agency of the Academy of Sciences of the Czech Republic (grant No. A4050605) for financial
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