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Equations for the second derivative of the Gibbs energy of mixing with respect to composi-
tion were derived on the basis of the Barker–Guggenheim theory of quasichemical equilib-
rium for mixtures of two polymers containing polar groups and a nonpolar rest. Using
equations derived, conditions for the phase separation in mixtures of two strongly
intercomplexing polymer components were evaluated. The phase instability appears when
the components differ in their polar group contents (strictly speaking, in their surface frac-
tions in respective macromolecules), or due to an unfavorable interaction between nonpolar
groups of the components. The effect is conditioned by small affinity of polar to nonpolar
groups and may be influenced by the difference in this affinity between both components;
nevertheless, the latter factors are not sufficient for a phase instability to occur.
Key words: Phase stability; Polymer mixtures; Hydrogen bonds; Intercomplexing polymers;
Quasichemical equilibrium theory.

The study of phase separation in polymer mixtures often brings unexpected
findings. Most of them could be explained by assuming merely an incom-
plete establishment of phase equilibrium due to small mobility of
macromolecules in systems without solvents, but some of them could be
interpreted by means of a theoretical model derived from equilibrium ther-
modynamics. The latter are represented by the behaviour of a mixture of
two polymers in which phase separation may occur regardless of the fact
that both components form a polymer–polymer complex bound by strong
interactions (hydrogen bond, as a rule). For example, measurements of Tg’s
of polymer mixtures led to the conclusion that the mixture of
poly(oxyethylene) and poly(methacrylic acid) shows limited miscibility1 in
a certain concentration range. Only small attention has been devoted to
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the problem of phase separation in complex-forming synthetic polymers.
Haraguchi et al.2,3 measured phase equilibria in a ternary mixture tolu-
ene/ω-aminopolystyrene/ω-sulfopoly(oxyethylene) where the complex for-
mation occurs through functional end groups and manifests itself by an un-
usual splitted form of the coexistence curve (binodal). The results could be
interpreted by the mean-field theory of the Flory–Huggins type. A theory of
association in binary mixtures of hydrogen-bonded polymers was formu-
lated by Tanaka et al. who were dealing with systems where the association
leads to formation either of reversible diblock copolymers4 or of reversible
graft copolymers5. Assuming uniformity of both nominal polymer compo-
nents, phase diagrams were obtained which, in addition to macroscopically
heterogeneous regions, show regions of mesophases containing ordered
microdomains of molecular dimensions. In an ample series of papers (see
e.g. refs6,7), Painter, Coleman et al. dealt both experimentally and theoreti-
cally with mixtures of polymers bearing a proton-donor or proton-acceptor
group on each of their monomer units.

All theories mentioned above were based on the concept of chemical
equilibrium among species formed by association, constituting a mixture of
the Flory–Huggins type. Non-specific interactions were treated by conven-
tional interaction parameter χ and phase separation of the complex-
forming mixture was brought about by a sufficiently high positive value of
this quantity. But this parameter involves only a global description of the
whole spectrum of nonspecific interactions. For example, in mixing of two
components, the one containing polar group A and nonpolar P and the
other polar group B and nonpolar Q, new binary contacts of the types A–B,
A–Q, P–B and P–Q are formed at the expense of contacts A–A, P–P, A–P,
B–B, Q–Q, B–Q. Of these contacts, only A–B, and possibly A–A or B–B are
hydrogen bonds, which are active in complexation equilibria; the other
interactions are incorporated into parameter χ. The fact that this parameter
is not included in equations describing the association equilibrium origi-
nates in a simplifying assumption that the contribution of nonspecific in-
teractions to the Gibbs energy of mixing is given by nominal
concentrations of both initial components only and does not depend on
the degree of their engagement in the association equilibria.

A more detailed analysis of the problem would evidently need a detailed
description of the so-called nonspecific interactions. This is enabled by the
use of the Barker–Guggenheim theory which treats all sorts of pair contacts
in the same manner without regard to “chemical” or “physical” interac-
tions. The basic concept of this theory is represented by a set of equations
(for different pairs K, L) describing the “quasichemical” equilibrium of the
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physical process during which two heterocontacts between groups K and L
are formed at the expense of homocontacts K–K and L–L. On the basis of
this theory, we have derived equations for the second derivative of the
Gibbs energy of mixing with respect to composition8. As it is known, the
derivative acquires negative values under the conditions of the phase insta-
bility and is equal to zero along the spinodal line. In this paper, we will use
the derived equations for characterization of conditions under which phase
instability in a mixture of strongly complexing polymers appears (phase in-
stability in a range of composition indicates phase separation in a wider
range). The equations were derived under the assumption that polymer
components 1 and 2 differ in nature of their polar groups, but have chemi-
cally similar nonpolar groups. Finally, we will treat some consequences
which could follow from the different character of nonpolar groups in both
components.

THEORETICAL

Basic Equations

Equations of quasichemical equilibria between contacts K–L, K–K and L–L
are usually written in the form

N N NKL KL KK LL
2 24= η , (1)

where NKL is the number of contacts of the K–L type and parameter ηKL is a
function of temperature and/or pressure only.

In our preceding communication8, equations of quasichemical equilibria
were advantageously expressed by means of quantities related to the unit
number of interaction sites. That is why the site or surface fraction is de-
fined again

θ j
j j
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s
= =

φ

φ∑ ∑
, (2)

where nj is the amount of the j-th component, z is the lattice coordination
number, zqj is the number of surface sites interacting with nearest neigh-
bours, φj is the segment fraction, and sj characterizes the surface-to-volume
ratio
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where rj is the number of segments in a molecule of j-th component.
Further we define
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N , (4)

where ∆G is Gibbs energy of mixing, and ∆GN and ∆Gs are related to the
unit quantities of segments and sites, respectively. The fractions of interac-
tion sites (A and B are polar groups in molecules of components 1 and 2, re-
spectively, R is nonpolar group in each component) are defined as

ψ α θA A= 1 , (5a)

ψ α θB B= 2 , (5b)

ψ α θ α θR A B= − + −( ) ( ) ,1 11 2 (5c)

where αA and αB give the proportion (relative area) of contact sites of type A
and B, respectively, in the corresponding molecule. It is obvious that ψA +
ψB + ψR = 1.

Consistently, we define

y
n

z q n q n
K LKL

KL KL=
+

+
≡

( )

( )
( ; ,

1

1 1 2 2

δ
A; B; R) (6)

where nKL is the number of contacts between groups of types K and L, δKL is
the Kronecker delta, and further

y yK KK= 1 2/ . (7)
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Equations of quasichemical equilibria between contacts of different type
are then

y y yKL KL K L= η , (8)

where ηKL is a parameter independent of composition. There are also bal-
ance equations

y y yAA AB AR A+ + = ψ , (9a)

y y yAB BB BR B+ + = ψ , (9b)

y y yAR BR RR R+ + = ψ . (9c)

By substitution from Eq. (8), we obtain the following set of three equa-
tions

y y y y yA AB A B AR A R A

2 + + =η η ψ , (10a)

η η ψAB A B B BR B R By y y y y+ + =2 , (10b)

η η ψAR A R BR B R R Ry y y y y+ + =2 . (10c)

The Barker–Guggenheim form of the Gibbs energy of mixing can be split
into a combinatorial part (designed by superscript C) and an interactional
part (designed by I)
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where ( )Gs i
I 0 relates to neat component i. The second derivative of the Gibbs

energy with respect to composition is then given by the relation
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where the interaction parameter χ sc
I is defined as

( )( )χ ∂ ∂φsc
I

N
I= − 1 2 2

1
2/ /RT G∆ (14)

and is given by the equation
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where
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In our preceding communication, equation for calculation of this param-
eter was given in the form (see Eq. (75) in ref.8)

χ
α α α α

sc

I A B AB B AR A BR

AB AR AB BR

= − 〈 〉 − + +
+ +

s D D D
D D D D D2

2 2 2( )

AR BR

A B A B
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−

+ −





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α θ α θ α α
θ θ ψ

2 1

1 2

(17)

where

D y K LKL K L KL= − ≡2 ψ ψ ( ; A; B; R) (18)
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and yKL is given by Eq. (8). The values of yK and yL for a given composition
need to be calculated by numerical solution of the set of equations (10a),
(10b) and (10c).

Approximate Equations for Very Strong Interactions

Now we introduce approximate equations valid in the case when polar
groups A and B strongly attract each other (large ηAB) while polar (A, B) and
nonpolar (R) groups strongly repel each other (small ηAR and ηBR). An in-
spection of these equations enables qualitative conclusions about the influ-
ence of individual factors on the value of χ sc

I and thus of the second
derivative of the Gibbs energy.

1. Suppose first that groups A are in excess over groups B (ψA > ψB). The
following hypothetical case

η η ηAR BR AB= = =0 0 1 0/ (19)

can be described by simple analytical expressions. The frequency of A–B
contacts is given by the content of the minor group and hence

y AB B

∞ = ψ , (20)

where the superscript ∞ denotes the system specified by Eq. (19).
It is also valid that

y AR

∞ = 0 , (21)

yBR

∞ = 0 . (22)

After substitution into Eqs (9a), (9b) and (9c) and their solution using Eq.
(7), we obtain

y A A B

∞ = −ψ ψ , (23a)

Collect. Czech. Chem. Commun. (Vol. 64) (1999)

Hydrogen-Bonded Polymer Mixtures. II 19



yB

∞ = 0 , (23b)

yR R

∞ = ψ . (23c)

Using expressions (18) and after substitution into Eq. (17) and rearrange-
ment, we obtain

( )
( ) ( ) ( )

(
χ

ψ α ψ α ψ α α ψ ψ
ψsc

I R A B B A A B A B∞ = − 〈 〉 + − − −s
2

2 1 2
2

2 2 2

A B A B− ψ ψ ψ)
. (24)

If ψB approaches ψA from the bottom, χ sc
I decreases to infinitely negative

values. On the other hand, for small ψB, when ψA → αA, χ sc
I can, at suffi-

ciently large difference (αA – αB), acquire positive values so that the mixture
may show phase instability in this region.

If A is the minor polar group (ψA < ψB), the equations given above are
valid after exchange of subscripts A and B.

2. If parameters ηAR, ηBR and 1/ηAB acquire nonzero, but small values, we
can calculate correction terms for Eq. (24). By an approximate solution of
equations for contact balances, we obtain in the case of ψA > ψB

y AR AR A B R

AR

B= − −






 −η ψ ψ ψ

η
ψ( ) ( ) ,

2

2
1 2 (25a)

( )y BR BR AB B= −η η ψ ψ ψ ψ/ / ( ) ,R A B (25b)

y yAB B BR AB
-2

B= − − −ψ η ψ ψ ψ2 / ( ) .A B (25c)

Finally, using Eqs (16) and (17), we have

( ) ( )[ ]χ χ η η η ηsc
I

sc
I

AR AR BR AB BR AB AB= + + +
∞ −s

Q Q Q
2

2/ , (26)

where
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ψ ψ ψ
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4
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2

/
, (27a)

( ) ( )[ ]
( )

QBR
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A B R
3/2

=
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−

α α α α α α ψ α α α α ψ

ψ ψ ψ

2 4 2

4
5 2/

, (27b)

QAB

A B

A B

=
−

α α
ψ ψ

2 2

3( )
. (27c)

The frequency of contacts A–R and B–R is no longer zero; this fact must
lead to a lowering of the value of the interaction parameter, and thus we
would expect a negative sign with QAR and QBR. This is unequivocally the
case with QAR because, owing to an excess of groups A, the formation of
A–R contacts does not disfavour the frequency of A–B contacts. On the
other hand, at high values of ηAB, almost all groups B are involved in con-
tacts A–B, and thus contacts B–R can form only at the expense of A–B con-
tacts, as is obvious from the second term on the right-hand side of Eq.
(25c). The QBR coefficient then consists of two terms; the term correspond-
ing to the formation of B–R contacts is negative (analogously to QAR), but it
prevails only if αB is sufficiently larger than αA and the concentration of
component 2 is sufficiently large. Otherwise, the term expressing competi-
tion of B–R and A–B contacts prevails and QBR has positive sign. The posi-
tive sign of the QAB coefficient reflects an increase in χ sc

I with decreasing
ηAB. When constants ηAR, ηBR and 1/ηAB are small quantities of the same or-
der of magnitude x, the term ηARQAR in Eq. (27b) is the only term of the or-
der x, the other two terms being of the order x2. The next possible term of
the same order, containing ηAR

2 , is zero. The value of correction terms in Eq.
(27b) will obviously grow rather fast when the composition approaches a
value at which the concentrations of A and B groups are equal (ψA = ψB). In
this case, even terms of higher orders, not discussed here, are operative.

3. A special analysis is required in the case when the concentration of A
groups is equal to that of B groups (“point of equivalence”)

ψ ψ ψA B= = . (28)

This situation becomes operative at θ1 given by the relation
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( )θ α α α1 = +B A B/ , (29)

so that

( )ψ α α α α= +A B A B/ . (30)

For such composition, in the hypothetical case where ηAR = 0 and ηBR = 0,
it is possible to obtain an analytical solution for any value of ηAB. By solv-
ing the equation set (9a), (9b) and (9c) for this case, we obtain

y yA B
AB

= =
+
ψ
η1

, (31a)

( )y AB AB AB= +η ψ / η1 , (31b)

yR = −1 2ψ , (31c)

and, after substituting into Eqs (16) and (17), we have

( ) ( ) ( ) ( )[ ]χ
ψ

α α η α α ψsc
I

A B AB A B= − + − − − −
s

8
1 1 2

2 2
/ . (32)

If ηAB attains high values, we can simplify the equations given by neglect-
ing terms which do not contain this constant; we obtain, e.g., yAB ≈ ψ (for
instance, the concentration of complex is equal to the concentration of
groups A or B).

4. Let us consider again a system, in which parameters ηAR, ηBR and 1/ηAB
attain nonzero, but small values. Solving equations (9a) and (9b), we obtain

( ) ( )y y y y yAB AR BR AR BR AB≈ − + − − +ψ ψ η1
2

1
2

4
2 2 2/ ; (33)

here yAR and yBR can be approximately expressed using Eqs (31a) and (31b)
as

Collect. Czech. Chem. Commun. (Vol. 64) (1999)

22 Pouchlý, Živný, Sikora:



( )y KK KR R AB
-1/2 A;B .= − ≡η η ψ ψ1 2 1 2

1 2/ / (34)

After substitution into Eq. (75) from ref.8 and rearrangement, we obtain

( )
( )

χ
α α

ψ η
sc
I A B

AR BR AR BR AB

= −
+

+ + − +








−
s

y y y y2 2 4

2

2 2 2/

−
− + − 




α α α α
ψψ

A B B A

R

2 21 1( ) ( )
. (35)

The second term in square brackets is the limit of the first term for hypo-
thetical state of random mixing; in the case of large ηAB and small ηAR, ηBR,
it can be neglected in first approximation. If constant ηAB grows to infinity,
quantities yAR and yBR decrease to zero even at nonzero ηAR, ηBR, and χ sc

I pa-
rameter diverges to infinitely negative values. On the other hand, if η−

AB
1

and ψ are small quantities of the same order of magnitude as ηAR and ηBR,
the frequency of the “thermodynamically high-quality” A–B contacts de-
creases in favour of the formation of lower-quality A–R and B–R contacts.
Thus the absolute value of χ sc

I will be strongly reduced by increasing ηAR
and/or ηBR.

Course of Spinodal in the Temperature versus Composition Diagram

An interesting conclusion concerning the form of the spinodal curve in the
phase diagram temperature-composition follows from equations derived for
systems with small values of 1/ηAB, ηAR and ηBR. We start from expressions
for the second derivative of the Gibbs energy with respect to composition
and denote

( )[ ]Z G T
T

= ∂ ∂φ2
1
2∆ N / / .R (36)

The equation Z = 0 must be fulfilled in every point of the spinodal curve
and the change in composition with temperature is thus given by the rela-
tion
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( )
( )

∂
∂







= −
∂ ∂θ
∂ ∂θ

θ1

1

1

T

Z T

Z
T

/

/
. (37)

It follows from Eqs (13) and (26) that

( ) [ ]Z Z s Q Q Q= − − + +
∞

−c
sc
I

AR AR BR AB BR AB AB2 2χ η η η η( ) , (38)

where Zc is a combinatorial term and the second term on the right-hand
side is given by Eq. (24). For our system, both these expressions are domi-
nant terms on the right-hand side of Eq. (38) and are independent of tem-
perature. The change of Z with temperature is then given by the equation

( )( )[ ]∂
∂

η η η ηZ
T

s

T
h Q h Q h h Q= − + + −−

R 2

22AR AR AR AB AB AB AB BR BR AB BR , (39)

where hKL is the change of enthalpy associated with formation of one
KL-type contact. It is obvious that for small values of ηAR, ηBR and η−

AB
1 , this

derivative is negligible. On the other hand, by differentiation of Eq. (38)
with respect to θ1, the first two terms on the right-hand side of the equa-
tion do not vanish. Then the denominator on the right-hand side of Eq.
(37) usually attains reasonable values, so that the spinodal composition is
almost independent of temperature and both branches of the spinodal
curve are almost vertical straight lines. The only exception is in the vicinity
of the critical point where

( )∂ ∂θZ
T1 0= . (40)

The slope of the spinodal is thus finite in the vicinity of the critical point,
and it is zero in the critical point itself.

Effect of Difference in Nonpolar Groups

The phase separation in systems so far studied with complexation of
components was conditioned by inequality of relative areas of polar groups
(αA ≠ αB). It follows from Eq. (13) that the phase instability can be also
brought about by a sufficiently great difference in molecular surface-
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-to-volume ratios, s1–s2. Finally, it is necessary to take into account that our
calculations were made under the assumption that nonpolar groups R are
of the same nature in both components. Let us admit that they are different
and denote polar groups in components 1 and 2 as P and Q, respectively.
An exact solution would result in a much more complicated expression
than that included in the right-hand side of Eq. (16); therefore, we assume
that

η ηAP AQ= , (41a)

η ηBP BQ= , (41b)

but

η δηPQ = −1 , (42)

where δη is sufficiently low to permit a perturbation procedure of solution.
We obtain thus the correction for parameter χ sc

I

( ) ( )
δχ δη /

∂

∂θsc
I P Q= − 2

2

1
2

y y
(43)

which is to be added to the original value of χ sc
I . The correction can be ex-

pressed simply in some limit cases only; for instance, if all four parameters
of interactions of polar with nonpolar groups (i.e., ηAP, ηAQ, ηBP, ηBQ) are
zero, then we have

δχ
α α

α θ α θ
δηsc

I A B

A B

=
− −

− + −
( ) ( )

[( ) ( ) ]
.

1 1

1 1

2 2

1 2
3

(44)

Accordingly, if ηPQ < 1, δη is positive and the contribution of this term to
the value of the second derivative of G is negative. Thus, for sufficiently
great δη, phase instability may arise even for αA = αB as a consequence of
unfavourable P–Q interaction, as was assumed by authors who solved this
problem by the method of association equilibria2–5.
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Let us discuss the symmetry of curves in Fig. 1, where αA = αB. The nega-
tive contribution of the P–Q interaction will be concentration-
independent, so that the curve for the second derivative of the Gibbs en-
ergy is shifted without deformation toward lower values and two regions of
phase instability are formed on both sides of the vertical symmetry axis (φ2
= 1/2). Accordingly, in the phase diagram T(φ2), two symmetrically placed
spinodal curves appear, which in general case may, but not necessarily,
mean an occurrence of two symmetrically placed binodals (cf. refs2–5).

DISCUSSION

Using several graphs, we will show an influence of different factors on the
sign and value of the second derivative of the Gibbs energy with respect to
composition. First, let us show the unimportance of the athermal contribu-
tion in Eq. (13). The first two terms on its right-hand side correspond to the
Flory–Huggins equation and, for long chains (r of the order 103 and
higher), they have negligible values with the exception of narrow intervals
at the margins of the graph (for φ1 → 0 and φ2 → 0). The third term is nega-
tive and follows from the difference in molecular surface-to-volume ratios
of both components. In our graphs, this term does not play any role be-
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FIG. 1
The second derivative of the Gibbs energy of mixing with respect to composition in its
compositional dependence: the influence of ηBR parameter if ηAR = ηBR. αA = αB = 0.25; ηAB = 10.
Curves: 1 ηAR = 0, 2 ηAR = 0.1, 3 ηAR = 0.3
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cause we have chosen s1 = s2 and thus also θ1 = φ1. It is then only the inter-
action term which becomes operative in the whole range of composition:

∂ ∂ ≅ −2
1
2 2∆G TN sc

I/ .ϕ χR (45)

In Fig. 1, the system with a great affinity to polymer–polymer association
(ηAB = 10) is shown for different values of the interaction parameter ηAR,
which are the same also for the parameter ηBR. We observe dramatic differ-
ences between the second derivative of G in the middle (the maximum cor-
responds to condition ψA = ψB) and in the border regions of composition,
but the second derivative does not sink into negative values and the system
is phase-stable in the whole range of composition. The order of curves in
the middle region is opposite to that at the borders. For instance, at the
right border, an influence of thermodynamic quality of A–R contacts be-
comes operative, the QAR term in Eq. (26) prevails over the QBR term and
the second derivative increases with ηAR. On the other hand, competition
of contacts A–R and/or B–R with A–B contacts prevails in the middle region.
This can be seen more clearly in Fig. 2 where the influence of A–R contacts
is eliminated and the curves only differ in the ηBR parameter. At an excess
of groups B (small φ1), the quality of B–R contacts plays a dominant role,

Collect. Czech. Chem. Commun. (Vol. 64) (1999)

Hydrogen-Bonded Polymer Mixtures. II 27

FIG. 2
The second derivative of the Gibbs energy of mixing with respect to composition in its
compositional dependence: the influence of ηBR parameter if ηAR = 0. αA = αB = 0.25; ηAB = 10.
Curves: 1 ηBR = 0, 2 ηBR = 0.1, 3 ηBR = 0.3
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while at their lack (φ1 > 1/2), the order of curves is governed by an unfavor-
able influence of the competition of B–R and A–B contacts.

The influence of increasing difference in the relative area of polar groups
is noticeable in Fig. 3. If we let increase αA and, to the same extent, decrease
αB, then, according to Eq. (29), the value of θ1, at which the equivalence of
surface sites A and B is reached, decreases and so does the value of ψ. Ac-
cordingly, the maxima of curves are shifted to the left (somewhat more
quickly than the mentioned value of θ1) and, according to Eqs (34) and
(35), the value of (–χ sc

I ) increases with decreasing ψ, the value of the second
derivative in its maximum also increasing. On the left-hand side, we ob-
serve an increase in the second derivative with increasing difference (αA –
αB). On the contrary, a decrease at the right-hand side is evident; at suffi-
ciently great difference in α’s (curve 4), the sought-after region of phase in-
stability even appears. The phase separation of blends of two strongly
interacting polymers can thus appear if the content of polar group A along
the chain differs significantly from that of group B. In this manner (in suffi-
cient distance from the equivalence composition), “unfavorable” contacts
between polar groups in excess (in Fig. 3, groups A) and nonpolar groups
are forced. The mixture responds by forming another phase where the ex-
cessive molecules of component 1 concentrate.
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FIG. 3
The second derivative of the Gibbs energy of mixing with respect to composition in its
compositional dependence: the influence of the difference αA – αB. αA + αB = 0.5; ηAB = 10,
ηAR = ηBR = 0.1. Curves: 1 ∆α = 0, 2 ∆α = 0.1, 3 ∆α = 0.2, 4 ∆α = 0.3 (∆α = αA – αB)
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In Fig. 4, a similar system with αA > αB is studied in dependence on de-
creasing strength of A–B interactions. As it is seen, the maximum of the sec-
ond derivative decreases and shifts left. In the same direction, the region of
negative values becomes wider and the minimum deepens. In Fig. 4, we put
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FIG. 5
The position, φ1,spinod, of the left margin of the phase instability region in the dependence
on ηAB for different values of ηAR and ηBR parameters (the right margin lies in close vicinity
of φ1 = 1). αA = 0.3, αB = 0.1. Curves: ❍ ηAR = 0.1, ηBR = 0.3; ❐ ηAR = ηBR = 0.1; ∗ ηAR = 0.2,
ηBR = 0.1; ● ηAR = 0.3, ηBR = 0.1
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FIG. 4
The second derivative of the Gibbs energy of mixing with respect to composition in its
compositional dependence: the influence of ηAB parameter. αA = 0.3, αB = 0.1; ηAR = ηBR =
0.1. Curves: 1 ηAB = 10, 2 ηAB = 6, 3 ηAB = 4, 4 ηAB = 3, 5 ηAB = 2, 6 ηAB = 1.5, 7 ηAB = 1
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ηAR = ηBR. An inequality of these constants may influence the region of
thermodynamic instability in different directions, as it is shown in Fig. 5.
There, the dependence of composition corresponding to the left-hand
spinodal point versus the ηAB constant is plotted (the right-hand spinodal
point lies near to θ1 = 1). It is obvious that the composition range of insta-
bility widens if the polar group with greater α has smaller tendency to enter
into contacts with the nonpolar group R (e.g., when αA > αB, ηAR < ηBR); in
the opposite case, the region becomes smaller and it may not appear at all
(e.g., for ηAR = 0.3, ηBR = 0.1, if ηAB > 2).
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